
Wrocław MuleSoft
Meetup #1

April 25th, 2024

● Actively participate

● Propose interesting topics

● Present at future meetups

● Propose improvements/changes/ideas

● Have fun!!

Organizer

● 3+ years experience in MuleSoft

● Started as a Java, SQL Developer

Kuba Cieplucha

MuleSoft Developer, Competence Lead

 Nextview Consulting

Sponsors

Special thanks to:

Philip Poynton
Head of Recruitment
Nextview Consulting

Jarosław Kotuła
Recruiter

Nextview Consulting

AGENDA

● Following ELK on the data integration trail

● DataWeave Libraries

● Wrap-up & Quiz

● Networking time

MuleSoft Certifications transition to the Salesforce Certification program

● Certifications will be administered through Webassessor

● If you already have a Webassessor account no action is necessary. You will receive an email confirmation

● If you do not have a Webassessor account one will be created for you using the email address on your

MuleSoft Training profile. You will receive a welcome email with login instructions and next steps

● Dates:

○ April 19, 2024: Last day to purchase MuleSoft exams through MuleSoft Training.

○ April 26, 2024: Last day to take a MuleSoft exam on MuleSoft Training

○ May 6, 2024: Start scheduling future exams via Webassessor.

● No maintenance is required for MuleSoft certification holders with pending maintenance as of January 1,

2024. Moving forward, maintenance requirements will be fulfilled through Trailhead, with more details to

come in 2025.

Speaker

● 5+ years experience in MuleSoft

● Previously a Java Developer

● RabbitMq enthusiast

● PhD in Agronomy (really)

Leszek Gersztyn

Software Engineer

 EG/AS

Following ELK on the

data integration trail

Looking for…

● Better understanding of the processes in our
MuleSoft landscape.

● One place to-go for resolving issues with the flow.
● Keep track of the message flowing in the system.

Solution - use RTF

Thank you

No RTF - we will manage!

We can use some external tools an libs to manage
our logs and send them to a place where we can
analyze them.

Looking for ELK
Elastic stack to the rescue!

The Elastic Stack, formerly known as the ELK Stack, is
a powerful set of open-source tools designed for a
variety of data analytics and visualization tasks.
Comprised of Elasticsearch, Logstash, Kibana, and
Beats, this stack offers a comprehensive solution for
searching, analyzing, and visualizing large volumes of
data in real-time.

Log4j2
A quiet hero of this tale.

Embedded in the mulesoft container is a powerful and flexible
logging framework that allows developers to instrument their code
to produce detailed logs, which can be useful for debugging,
monitoring, and auditing purposes.

What do we need?

● Docker
● Docker compose
● Elastic stack containers - https://github.com/deviantony/docker-elk
● MuleSoft apps

Additional components:
● json-logger - https://github.com/mulesoft-consulting/json-logger (fork it!)

https://github.com/deviantony/docker-elk
https://github.com/mulesoft-consulting/json-logger

Let's do it!
Setting up the elastic stack

Track the ELK

All we need now is to forward some logs
Stash it!

Logstash serves as the data processing pipeline component of the
Elastic Stack. It ingests data from multiple sources, transforms it
according to user-defined rules, and then sends it to Elasticsearch
for indexing and storage. Logstash supports a wide range of input
sources, including logs, metrics, and event streams, making it a
versatile tool for data ingestion and enrichment.

Logging
What to do, what to do…

● Use the proper level for your logging.
● Use correlationId for tracking your message.
● Payload logging - think about GDPR.

Logging
What to do, what to do…

When thinking about the logs just remember these principles:
● Do I need it?
● Will I understand what I’m trying to tell the user?
● Will the user understand what I’m trying to tell him?
● Do I really need it?
● Is it in the proper level?
● What is the purpose of this message?
● Do i really, really need it?

Over logging
Some consequences

● Performance Impact: Excessive logging can impact application
performance, especially in high-throughput systems, due to the
overhead of generating and writing log messages.

● Increased Log File Size: Over logging leads to larger log files,
making it more difficult to find relevant information when
troubleshooting issues.

● Difficulty in Log Analysis: With an abundance of log messages, it
becomes challenging to identify important events and diagnose
issues effectively.

Logstash plugins
You never know what you will get

https://www.elastic.co/guide/en/logstash/current/input-plugins.html

● beats
● dead_letter_queue
● http
● jdbc
● jms
● jmx
● kafka
● kinesis
● log4j
● rabbitmq
● salesforce
● tcp

https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-beats.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-dead_letter_queue.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jms.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jmx.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kinesis.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-log4j.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-rabbitmq.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-salesforce.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-tcp.html

pom.xml configuration

<plugin>

 <groupId>org.mule.tools.maven</groupId>

 <artifactId>mule-maven-plugin</artifactId>

 <version>${mule.maven.plugin.version}</version>

 <extensions>true</extensions>

 <configuration>

 <cloudHubDeployment>

 <properties>

<elkstack.host>${elk.host}</elkstack.host>

<elkstack.port>${elk.port}</elkstack.port>

 </properties>

</cloudHubDeployment>

(...)

Lets format some logs
Log format configuration

<Appenders>

(...)

<Socket name="ELK_STACK" host="${sys:elkstack.host}" port="${sys:elkstack.port}" protocol="TCP"
>

 <JsonLayout complete="false" compact="true" eventEOL="true" properties="true"
objectMessageAsJsonObject="true" >

<KeyValuePair key="appName" value="mule-meetup-logging-app" />

</JsonLayout>

</Socket>

(...)

 </Appenders>

Log example

{
 "instant" : {
 "epochSecond" : 1713899793,
 "nanoOfSecond" : 405830300
 },
 "thread" : "[MuleRuntime].uber.01: [mule-meetup-logging].mule-meetup-loggingFlow.CPU_LITE @64d075d2",
 "level" : "INFO",
 "loggerName" : "org.mule.runtime.core.internal.processor.LoggerMessageProcessor",
 "message" : "{user=James Bond, password=*****}",
 "endOfBatch" : true,
 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",
 "contextMap" : {
 "correlationId" : "fbf3b860-01a5-11ef-a8ae-bcf171a2e298",
 "processorPath" : "mule-meetup-loggingFlow/processors/1"
 },
 "threadId" : 42,
 "threadPriority" : 5,
 "appName" : "mule-meetup-logging"
}

I have my logs in
configured. What now?

View it!
Kibana to the rescue!

Kibana is the visualization and exploration component of
the Elastic Stack. It provides a web-based interface for
creating dashboards, charts, and visualizations based on
data stored in Elasticsearch. With Kibana, users can
interactively explore their data, gain insights through
powerful analytics features, and share their findings with
others.

Dashboard

Let's add some complexity to our logs
I am GROK!

Grok is a great way to parse unstructured log data into something structured and queryable.

filter {

 grok {

 match => { "message" => "%{IP:client} %{WORD:method} %{URIPATHPARAM:request}
%{NUMBER:bytes} %{NUMBER:duration}" }

}

}

Log example

{
 "instant" : {
 "epochSecond" : 1713899793,
 "nanoOfSecond" : 405830300
 },
 "thread" : "[MuleRuntime].uber.01: [mule-meetup-logging].mule-meetup-loggingFlow.CPU_LITE @64d075d2",
 "level" : "INFO",
 "loggerName" : "org.mule.runtime.core.internal.processor.LoggerMessageProcessor",
 "message" : "{user=James Bond, password=*****}",
 "endOfBatch" : true,
 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",
 "contextMap" : {
 "correlationId" : "fbf3b860-01a5-11ef-a8ae-bcf171a2e298",
 "processorPath" : "mule-meetup-loggingFlow/processors/1"
 },
 "threadId" : 42,
 "threadPriority" : 5,
 "appName" : "mule-meetup-logging"
}

Understand and analyze.
I am Grok.

filter {
 date {
 match => ["timeMillis", "UNIX_MS"]
 }
 mutate {
 add_field => {
 "correlationId" => "%{[contextMap][correlationId]}"
 }
 }
 mutate {
 remove_field => ["thread","loggerName","endOfBatch","loggerFqcn","threadId","threadPriority","contextMap"]
 }
}

Easy to understand, easy to analyze
I am Grok?

{

"@timestamp": ["2024-04-24T06:28:38.518Z"],

"@version": ["1"],

"appName": ["mule-meetup-logging"],

"correlationId": ["e17c1e60-0203-11ef-ae28-bcf171a2e298"],

"data_stream.dataset": ["generic"],

"data_stream.namespace": ["default"],

"data_stream.type": ["logs"],

"instant.epochSecond": [1713940118],

"instant.nanoOfSecond": [515248500],

"level": ["INFO"],

"message": ["{user=James Bond, password=*****}"],

"_id": "BwDKDo8B6MvvLc2svB1n",

"_index": ".ds-logs-generic-default-2024.04.24-000001",

"_score": null

}

Thank you

DataWeave

Libraries

Purpose

● Create functionalities for common use-cases in your integration/project/organization

● Enable organized reusability in different applications

● Version management

● Ensure proper execution by creating tests

● Create documentation to provide explanations and show examples

● Enable discovery through Exchange

Configure Implement Deploy Use

Configure

● Download Visual Studio Code

● Install the DataWeave extension:

○ Click ”Extensions” on the panel on the left

○ Type “DataWeave” into the search bar

○ Click the blue install button next to

“DataWeave 2.0 (BETA)”

● Select View -> Command Pallete…

● Type “DataWeave” into the search bar

● Select “DataWeave: Create Library Project”

* In order to deploy to Exchange you need to input the Organization ID
taken from Anypoint Platform. It can later on be changed in the pom

Path to the location in which you want to save your project without spaces

Implement

● Create modules/files in the
src/main/dw folder. Files created
there will be packaged and
shared as part of the library

● Use PascalCase naming format
for the modules/files e.g.
MySuperCoolModule.dwl

● Use cammelCase
for function names

● Use PascalCase
for type names

● Use mapping to try out your code

● Using “Run Preview” will execute the
current code state

● Enabling AutoPreview will continuously
evaluate the script

● Use the Asserts
modules functions to
create test cases
validating the behaviour
of created functions

● Generate documentation to
describe functions, parameters,
provide examples of use

● You can get a preview of the documentation by hovering over a
function/type/variable name

● By packaging the library you can check the generated Exchange pages in
../target/data-weave-docs/exchange_markdown

Deploy

● In Anypoint Platform, go to to Access Management -> Business Groups -> Select the
intended Business Group -> Settings tab -> copy the Business Group ID

● Go to the pom.xml file of the DataWeave library and change the groupId to the value
from Anypoint

● Scroll to the bottom of the pom.xml file, and uncomment the
○ distributionManagement tag
○ repository for exchange

● Change the ORGANIZATION_ID in both URL’s to the Business
Group ID from Anypoint Platform

● Configure your maven settings.xml file with credentials for Anypoint
Platform.

● The id of the distributionManagement, repository from pom.xml should
correspond to the id of the server in settings.xml

● A good way to organise the credentials is to create a Connected App,
for which the server credentials in settings.xml need to follow this
format:

<server>
<id>exchange</id>
<username>~~~Client~~~</username>
<password>clientId~?~clientSecret</password>

</server>

● Use the mvn clean deploy command to publish the library to Exchange

● The created test will be ran and validated

● Go to your Exchange
● The library will be available under the specified Name
● The Exchange documentation will be generated

with elements that were not specified
as empty/pre-populated

Use

● You can get the dependency snippet for your DataWeave
library in Exchange

● Add it in the dependencies section of you applications
pom.xml

<dependency>
 <groupId>ORGANIZATION_ID</groupId>
 <artifactId>wro-event-library</artifactId>
 <version>VERSION</version>
 <classifier>dw-library</classifier>
</dependency>

● You can also add it using by right clicking on the project ->
Anypoint Platform -> Manage DataWeave Libraries ->
Clicking the plus to search for it in your Exchange

● Once it’s added you can find in your projects Project
Libraries

● To use the created functionality simply import the created
module using:
import */nameOfTheFunction from ModuleName

Thank you

Quiz

● Actively participate

● Propose interesting topics

● Present at future meetups

● Propose improvements/changes/ideas

● Please complete the survey

Thank You
 and

 see you next time!

